A method for multi-spectral image segmentation evaluation based on synthetic images

نویسندگان

  • André R. S. Marçal
  • Arlete Rodrigues
چکیده

A general framework for testing the quality of the segmentation of a multi-spectral satellite image is proposed. The method is based on the production of synthetic images with the spectral characteristics of the image pixels extracted from a signature multi-spectral image. The knowledge of the location of objects in the synthetic image provides a reference segmentation, which allows for a quantitative evaluation of the quality provided by a segmentation algorithm. The Hammoude metric and three external similarity indices (Rand, Corrected Rand, and Jaccard) were chosen to perform this evaluation, but other metrics can also be used. The proposed methodology can be used for any type of satellite image (or multi-spectral image), set of land cover types, and segmentation algorithms. A practical application was carried out to illustrate the value of the proposed method. A SPOT satellite image was used to extract the spectral signature of 8 land cover types. Three test images were produced using the 8 land cover classes and two different 5 class sub-sets. The segmentation results provided by a standard algorithm were compared with the reference or expected segmentation. The results clearly indicate that the quality of a segmentation obtained from a multi-spectral image not only depends on the geometric properties of the objects present in the image, but also on their spectral characteristics. The results suggest that a specific evaluation should be carried out for each particular experiment, as the segmentation results are very dependent on the choice of land cover types. & 2009 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Framework for the Evaluation of Multi-spectral Image Segmentation

A general framework for testing the quality of the segmentation of a multi-spectral satellite image is proposed. The method is based on the production of synthetic images with the spectral characteristics of the image pixels extracted from a signature multi-spectral image. The knowledge of the exact location of objects in the synthetic image provides a reference segmentation, which allows for a...

متن کامل

A Novel Spot-Enhancement Anisotropic Diffusion Method for the Improvement of Segmentation in Two-dimensional Gel Electrophoresis Images, Based on the Watershed Transform Algorithm

Introduction Two-dimensional gel electrophoresis (2DGE) is a powerful technique in proteomics for protein separation. In this technique, spot segmentation is an essential stage, which can be challenging due to problems such as overlapping spots, streaks, artifacts and noise. Watershed transform is one of the common methods for image segmentation. Nevertheless, in 2DGE image segmentation, the no...

متن کامل

Performance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation

Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Geosciences

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2009